Agents that elevate platelet cAMP stimulate the formation of phosphatidylinositol 4-phosphate in intact human platelets

D. de Chaffoy de Courcelles, P. Roevens and H. van Belle

Department of Biochemistry, Janssen Pharmaceutica, B-2340 Beerse, Belgium

Received 17 October 1985

The present study investigates the effect of compounds that are known to elevate cAMP on the phospholipid metabolism of platelets. Prostaglandin E₁, forskolin and isobutylmethylxanthine induce an increase in [³²P]-phosphatidylinositol 4-phosphate (PIP) in platelets prelabelled with [³²P]orthophosphate. Possible roles of this phenomenon are discussed in view of the inhibitory effect of cAMP elevation on platelet activation.

Polyphosphoinositide

Prostaglandin E1

Forskolin

Isobutylmethylxanthine

Platelet

1. INTRODUCTION

Inositol phospholipids are involved in the signal transducing system of many platelet stimuli (review [1,2]). Phosphatidylinositol 4,5-bisphosphate (PIP₂) is apparently of major importance. Its phosphodiesteratic cleavage yields diacylglycerol and inositol trisphosphate. Diacylglycerol activates the C kinase which plays an important role in the physiological response [2]. Inositol trisphosphate has been demonstrated to be a potential mediator of Ca²⁺ release from intracellular Ca stores [1].

Phosphatidylinositol 4-phosphate (PIP) is an intermediate between phosphatidylinositol (PI) and PIP₂. In [3,4] we showed that direct activation of C kinase by 1-oleoyl-2-acetylglycerol (OAG) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) stimulates ³²P incorporation predominantly in PIP. Authors in [5] demonstrated that the increase in incorporation corresponded to an increase in mass.

More recently the direct activation of C kinase was reported to have a negative feedback control over agonist-induced hydrolysis of inositol phospholipids. Treatment of cellular systems with OAG or TPA inhibited the effects of agonists on

the primary receptor-coupled biochemical events as there are the activation of phospholipase C [7-11] and the increase in intracellular free Ca^{2+} [7-9,11,12].

Inhibition of the same events occurs when platelets are treated with agents known to elevate their cAMP content [13-20].

In analogy with our findings on OAG and TPAinduced PIP formation, we investigated whether agents known to elevate platelet cAMP also increase [³²P]PIP formation.

2. MATERIALS AND METHODS

Prostaglandin E_1 (PGE₁) and phospholipid reference product were obtained from Sigma (St. Louis, USA). IBMX (isobutylmethylxanthine) was from Janssen Chimica (Beerse) and forskolin (FK) from Calbiochem (La Jolla, USA). Silica gel 60-precoated plastic sheets were from E. Merck, FRG. [32 P]Orthophosphate was obtained from Amersham (England). Proteins for M_T determinations on SDS-polyacrylamide gels were from Bio-Rad. Platelet preparation, 32 P labelling of platelets, and lipid and protein analyses were performed exactly as in [21].

The control ³²P incorporation was always determined in the presence of the solvent for the compounds tested (1‰ ethanol for PGE₁ and FK, 1‰ DMSO for IBMX). Preliminary experiments had shown that the solvents alone had no influence on ³²P incorporation. Within the different experiments the control labelling in the PIP pool varied between 35000 and 100000 cpm. Within the time course of an experiment the incorporation did not significantly change [21]. The changes with addition of a compound are expressed as ‰ of the control ³²P incorporation.

3. RESULTS

On addition of PGE₁ (10^{-6} M), FK (10^{-5} M) and IBMX (10^{-3} M) the ³²P incorporation in PIP increased (fig.1). None of the compounds significantly altered ³²P incorporation in the other labelled lipid fractions (PIP₂, PI, phosphatidic

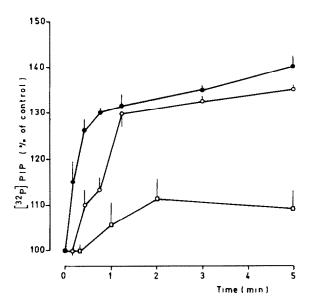


Fig.1. Changes in $[^{32}P]PIP$ after addition of PGE₁, FK or IBMX. PGE₁ (10^{-6} M) (\bullet — \bullet), FK (10^{-5} M) (\circ — \circ) and IBMX (10^{-3} M) (\circ — \circ) were added to platelets prelabelled with $[^{32}P]$ orthophosphate. At the indicated times, platelet samples were taken and incubation was stopped by adding the platelets to organic solvent (see section 2). Points represent the means \pm SE of duplicate samples from 4 (for PGE₁ and FK) and 2 (for IBMX) experiments. The control ^{32}P incorporation was taken as 100% for each experiment (see section 2).

acid, phosphatidylcholine and lysophosphatidylinositol) (not shown). The onset of phosphorylation differed for the 3 compounds. Phosphorylation induced by PGE₁ is more rapid than that of FK (fig.1); after 30 s the former reached about 70% of its maximum whereas the latter attained only 30–35%. [³²P]PIP formation induced by IBMX is low and more delayed (fig.1), being half maximal only after about 1 min.

Fig.2 illustrates that the changes in PIP induced by PGE₁ and FK are clearly concentration-dependent, PGE₁ being the most potent compound. The changes in [³²P]PIP provoked by IBMX were too small to assess accurately a dose dependency.

PGE₁, FK and IBMX induce phosphorylation of a 50 kDa, a 27 kDa and a 24 kDa protein (not shown) most probably by the activation of a cAMP-dependent protein kinase. Similar changes in protein phosphorylation patterns were found by others [22–24]. The 40 kDa protein phosphorylation (substrate for C kinase) was not affected [25].

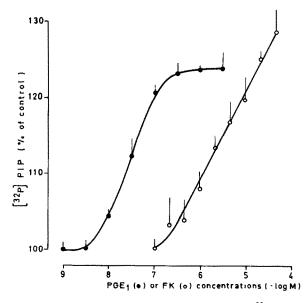


Fig. 2. Concentration-dependent changes in [32P]PIP. PGE₁ and FK were added to platelets prelabelled with [32P]orthophosphate. After 25 s (for PGE₁) and 1 min (for FK) the incubation was stopped as described in the legend to fig.1. Points represent the means ± SE of duplicate samples from 4 (for PGE₁) and 3 (for FK) experiments. The control ³²P incorporation was taken as 100% for each experiment.

4. DISCUSSION

Platelets have a bidirectional control system for transduction of an extracellular signal to the cell interior. Platelet activation by excitatory stimuli, that use Ca²⁺ and diacylglycerol as messengers, is antagonized by inhibitory platelet stimuli known to provoke a rise in cAMP [13–20] such as prostaglandins (i.e. PGE₁, PGD₂, PGI₂), FK and IBMX. Although acting through a different mechanism to elevate cAMP, the latter compounds all induce an increase in the [³²P]PIP levels in the platelet.

The complex metabolism of the polyphosphoinositides does not allow one to assign unequivocally this alteration to a specific enzymatic step. Increased [32P]PIP formation can be explained through phosphorylation of PI as we discussed in [4]. This statement is in agreement with findings cAMP-dependent that the protein stimulates the formation of polyphosphoinositides in plasma membranes from platelets [26] and the formation of PIP in plasma membranes from pig granulocytes [27]. Since an elevation of platelet PIP levels in a resting platelet does not appear physiologically relevant it is tempting to look for a separate role for PIP besides being an intermediate metabolite between PI and PIP2. In this context the finding of authors in [28,29] that PIP might be involved in Ca transport ATPases is attractive. Both activation of the C kinase [9] and addition of PGE₁ [20] have been shown to stimulate Ca²⁺ extrusion from the platelet cytoplasm. This lowering of a steady-state level of Ca²⁺ (second or third messenger) might evidently contribute to the inhibitory effects seen in these conditions.

Alternatively, a cAMP-induced shift of the PIP \Longrightarrow PIP₂ equilibrium to the left can explain an accumulation of [32 P]PIP. Since the inositol lipid cycle [PIP₂ \longrightarrow DAG (+ Ip₃) \longrightarrow PA \longrightarrow PI \longrightarrow PIP \longrightarrow PIP₂] does occur in the resting platelet [19,30], this would lead to concomitant lower steady-state levels of metabolites distal to PIP in inositol lipid cycle. Of major importance in the inhibitory effect of agents that elevate platelet cAMP would be the lowering in PIP₂ as substrate for agonist-induced phospholipase C and the decrease in steady-state levels of the putative second messengers (Ip₃ and DAG). Small changes in the equilibrium PIP \Longrightarrow PIP₂ would have an

amplificatory inhibitory effect on platelet activation; also, the excitatory agonist-induced increase as the basal levels of the second messenger would be lowered.

In conclusion, we found that agents known to elevate platelet cAMP induce an increase in [32P]PIP in the human platelet. Complete analogy at the level of signal transduction is now found between the negative feedback control of platelet activation by the C kinase and the inhibitory effect of agents that elevate platelet cAMP since both phenomena coincide with (i) a decrease in cytosolic Ca²⁺, (ii) a decrease in phospholipase C activity and (iii) an increase in PIP formation. A possible role for the latter remains to be elucidated.

REFERENCES

- [1] Berridge, M.J. and Irvine, R.F. (1984) Nature 312, 315-321.
- [2] Nishizuka, Y. (1984) Science 225, 1365-1370.
- [3] De Chaffoy de Courcelles, D., Roevens, P. and Van Belle, H. (1984) FEBS Lett. 173, 389-393.
- [4] De Chaffoy de Courcelles, D., Roevens, P. and Van Belle, H. (1984) Biochem. Biophys. Res. Commun. 123, 589-595.
- [5] Halenda, S.P. and Feinstein, M.B. (1984) Biochem. Biophys. Res. Commun. 124, 507-513.
- [6] Labarca, R., Janowsky, A., Patel, J. and Paul, S.M. (1984) Biochem. Biophys. Res. Commun. 123, 703-709.
- [7] MacIntyre, D.E., McNical, A. and Drummond, A.M. (1985) FEBS Lett. 180, 160-164.
- [8] Watson, S.P. and Lapetina, E.G. (1985) Proc. Natl. Acad. Sci. USA 82, 2623-2626.
- [9] Zavoico, G.B., Halenda, S.P., Sha'afi, R.I. and Feinstein, M.B. (1985) Proc. Natl. Acad. Sci. USA 82, 3859-3862.
- [10] Rittenhouse, S.E. and Sason, J.P. (1985) J. Biol. Chem. 260, 8657-8660.
- [11] Lynch, C.J., Charest, R., Bocckino, S.B., Exton, J.M. and Blackmore, P.F. (1985) J. Biol. Chem. 260, 2844-2851.
- [12] Cooper, R.H., Coll, K.E. and Williamson, J.R. (1985) J. Biol. Chem. 260, 3281-3288.
- [13] Rittenhouse-Simmons, S. (1979) J. Clin. Invest. 63, 580-587.
- [14] Billah, M.M., Lapetina, E.G. and Cuatrecasas, P. (1979) Biochem. Biophys. Res. Commun. 90, 92-98.
- [15] Billah, M.M. and Lapetina, E.G. (1983) Proc. Natl. Acad. Sci. USA 80, 965-968.

- [16] Hallam, T.J., Rink, T.J. and Sanchez, A.J. (1983) J. Physiol. 343, 98P.
- [17] Feinstein, M.B., Egan, J.J., Sha'afi, R.I. and White, J. (1983) Biochem. Biophys. Res. Commun. 113, 558-604.
- [18] Zavoico, G.B. and Feinstein, M.B. (1984) Biochem. Biophys. Res. Commun. 120, 579-585.
- [19] Watson, S.P., McConnell, R.J. and Lapetina, E.G. (1984) J. Biol. Chem. 259, 13199-13203.
- [20] Affolter, H., Erne, P., Bürgisser, E. and Pletscher, A. (1984) Naunyn-Schmiedeberg's Arch. Pharmacol. 325, 337-342.
- [21] De Chaffoy de Courcelles, D., Roevens, P. and Van Belle, H. (1985) J. Biol. Chem., in press.
- [22] Haslam, R.J., Lynham, J.A. and Fox, J.E.B. (1979) Biochem. J. 178, 397-406.
- [23] Nishizuka, Y. (1983) Phil. Trans. R. Soc. Lond. Ser. B 302, 101-112.

- [24] Lapetina, E.G., Watson, S.P. and Cuatrecasas, P. (1984) Proc. Natl. Acad. Sci. USA 81, 7431-7435.
- [25] De Chaffoy de Courcelles, D., Roevens, P., Fraipont, E., Gabriëls, L. and Van Belle, H. (1985) submitted.
- [26] Enyedi, A., Faragó, A., Sarkadi, B., Szăsz, I. and Gárdos, G. (1983) FEBS Lett. 161, 158-162.
- [27] Farkas, G., Enyedi, A., Sarkadi, B., Gárdos, G., Nagy, Z. and Faragó, A. (1984) Biochem. Biophys. Res. Commun. 124, 871-876.
- [28] Varsanyi, M., Tölle, K.-G., Heilmayer, L.M.G., Dawson, R.M.C. and Irvine, R.F. (1983) EMBO J. 2, 1543-1548.
- [29] Choquette, D., Hakim, G., Filoteo, A.G., Plishker, G.A., Bostwick, J.R. and Penniston, J.T. (1984) Biochem. Biophys. Res. Commun. 125, 908-915.
- [30] Agranoff, B.W., Murhy, P. and Seguin, E.B. (1983) J. Biol. Chem. 258, 2076-2078.